Source code for spflow.modules.leaves.poisson
import torch
from torch import Tensor, nn
from spflow.modules.leaves.leaf import LeafModule
from spflow.utils.leaves import init_parameter, _handle_mle_edge_cases
[docs]
class Poisson(LeafModule):
"""Poisson distribution leaf for modeling event counts.
Parameterized by rate λ > 0 (stored in log-space for numerical stability).
Attributes:
rate: Rate parameter λ (stored as log_rate internally).
distribution: Underlying torch.distributions.Poisson.
"""
[docs]
def __init__(
self,
scope,
out_channels: int = None,
num_repetitions: int = 1,
parameter_fn: nn.Module = None,
validate_args: bool | None = True,
rate: Tensor = None,
):
"""Initialize Poisson leaf.
Args:
scope: Variable scope (Scope, int, or list[int]).
out_channels: Number of output channels (inferred from params if None).
num_repetitions: Number of repetitions (for 3D event shapes).
parameter_fn: Optional neural network for parameter generation.
validate_args: Whether to enable torch.distributions argument validation.
rate: Rate parameter λ > 0.
"""
super().__init__(
scope=scope,
out_channels=out_channels,
num_repetitions=num_repetitions,
params=[rate],
parameter_fn=parameter_fn,
validate_args=validate_args,
)
rate = init_parameter(param=rate, event_shape=self._event_shape, init=torch.ones)
self.log_rate = nn.Parameter(torch.log(rate))
@property
def rate(self) -> Tensor:
"""Rate parameter in natural space (read via exp of log_rate)."""
return torch.exp(self.log_rate)
@rate.setter
def rate(self, value: Tensor) -> None:
"""Set rate parameter (stores as log_rate, no validation after init)."""
self.log_rate.data = torch.log(
torch.as_tensor(value, dtype=self.log_rate.dtype, device=self.log_rate.device)
)
@property
def _supported_value(self):
"""Fallback value for unsupported data."""
return 0
@property
def _torch_distribution_class(self) -> type[torch.distributions.Poisson]:
return torch.distributions.Poisson
[docs]
def params(self) -> dict[str, Tensor]:
"""Returns distribution parameters."""
return {"rate": self.rate}
def _compute_parameter_estimates(
self, data: Tensor, weights: Tensor, bias_correction: bool
) -> dict[str, Tensor]:
"""Compute raw MLE estimates for Poisson distribution (without broadcasting).
For Poisson distribution, the MLE is simply the weighted mean of the data.
Args:
data: Input data tensor.
weights: Weight tensor for each data point.
bias_correction: Not used for Poisson.
Returns:
Dictionary with 'rate' estimate (shape: out_features).
"""
n_total = weights.sum(dim=0)
rate_est = (weights * data).sum(dim=0) / n_total
# Handle edge cases (NaN, zero, or near-zero rate) before broadcasting
rate_est = _handle_mle_edge_cases(rate_est, lb=0.0)
return {"rate": rate_est}
def _set_mle_parameters(self, params_dict: dict[str, Tensor]) -> None:
"""Set MLE-estimated parameters for Poisson distribution.
Explicitly handles the parameter type:
- rate: Property with setter, calls property setter which updates log_rate
Args:
params_dict: Dictionary with 'rate' parameter value.
"""
self.rate = params_dict["rate"] # Uses property setter