import torch
from torch import Tensor, nn
from spflow.exceptions import InvalidParameterCombinationError
from spflow.modules.leaves.leaf import LeafModule
from spflow.utils.leaves import init_parameter, _handle_mle_edge_cases
from spflow.utils.projections import proj_bounded_to_real, proj_real_to_bounded
[docs]
class Geometric(LeafModule):
"""Geometric distribution leaf for modeling trials until first success.
Parameterized by success probability p ∈ (0, 1] (stored in logit-space for numerical stability).
Attributes:
p: Success probability (BoundedParameter).
distribution: Underlying torch.distributions.Geometric.
"""
[docs]
def __init__(
self,
scope,
out_channels=None,
num_repetitions=1,
parameter_fn=None,
validate_args: bool | None = True,
probs: Tensor | None = None,
logits: Tensor | None = None,
):
"""Initialize Geometric distribution.
Args:
scope: Variable scope (Scope, int, or list[int]).
out_channels: Number of output channels (inferred from params if None).
num_repetitions: Number of repetitions (for 3D event shapes).
parameter_fn: Optional neural network for parameter generation.
validate_args: Whether to enable torch.distributions argument validation.
probs: Success probability tensor.
logits: Log-odds tensor of the success probability.
"""
if probs is not None and logits is not None:
raise InvalidParameterCombinationError("Geometric accepts either probs or logits, not both.")
param_source = logits if logits is not None else probs
super().__init__(
scope=scope,
out_channels=out_channels,
num_repetitions=num_repetitions,
params=[param_source],
parameter_fn=parameter_fn,
validate_args=validate_args,
)
# Initialize parameters in well-behaved range to avoid extreme values
def init_geometric_probs(shape):
"""Initialize probs in [0.1, 0.9] range to avoid MLE instability."""
return torch.rand(shape) * 0.8 + 0.1
init_fn = torch.randn if logits is not None else init_geometric_probs
init_value = init_parameter(param=param_source, event_shape=self.event_shape, init=init_fn)
logits_tensor = init_value if logits is not None else proj_bounded_to_real(init_value, lb=0.0, ub=1.0)
self._logits = nn.Parameter(logits_tensor)
@property
def probs(self) -> Tensor:
"""Success probability in natural space (read via inverse projection of logits)."""
return proj_real_to_bounded(self._logits, lb=0.0, ub=1.0)
@probs.setter
def probs(self, value: Tensor) -> None:
"""Set success probability (stores as logits)."""
value_tensor = torch.as_tensor(value, dtype=self._logits.dtype, device=self._logits.device)
self._logits.data = proj_bounded_to_real(value_tensor, lb=0.0, ub=1.0)
@property
def logits(self) -> Tensor:
"""Logits for the success probability."""
return self._logits
@logits.setter
def logits(self, value: Tensor) -> None:
value_tensor = torch.as_tensor(value, dtype=self._logits.dtype, device=self._logits.device)
self._logits.data = value_tensor
@property
def _supported_value(self):
"""Fallback value for unsupported data."""
return 1
@property
def _torch_distribution_class(self) -> type[torch.distributions.Geometric]:
return torch.distributions.Geometric
[docs]
def params(self) -> dict[str, Tensor]:
"""Returns distribution parameters."""
return {"logits": self.logits}
def _compute_parameter_estimates(
self, data: Tensor, weights: Tensor, bias_correction: bool
) -> dict[str, Tensor]:
"""Compute raw MLE estimates for geometric distribution (without broadcasting).
For Geometric distribution, the MLE is p = n / (sum(x_i) + n).
Args:
data: Input data tensor.
weights: Weight tensor for each data point.
bias_correction: Whether to apply bias correction.
Returns:
Dictionary with 'probs' estimate (shape: out_features).
"""
n_total = weights.sum(dim=0)
n_success = (weights * data).sum(0)
p_est = n_total / (n_success + n_total)
if bias_correction:
p_est = p_est - (p_est * (1 - p_est) / n_total)
# Handle edge cases (NaN, zero, or near-zero p) before broadcasting
p_est = _handle_mle_edge_cases(p_est, lb=0.0)
return {"probs": p_est}
def _set_mle_parameters(self, params_dict: dict[str, Tensor]) -> None:
"""Set MLE-estimated parameters for Geometric distribution.
Explicitly handles the parameter assignment:
- probs: Property with setter, calls property setter which updates _logits
Args:
params_dict: Dictionary with 'probs' parameter value.
"""
self.probs = params_dict["probs"] # Uses property setter