.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/models/multivariate_leaf.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_models_multivariate_leaf.py: ================= Multivariate Leaf ================= We can learn a SPN with multivariate leaf. This example demonstrates learning an SPN with Chow Liu tree (CLTs) as multivariate leaves. .. GENERATED FROM PYTHON SOURCE LINES 9-49 .. code-block:: default import numpy as np np.random.seed(123) from spn.structure.leaves.cltree.CLTree import create_cltree_leaf from spn.structure.Base import Context from spn.structure.leaves.parametric.Parametric import Bernoulli from spn.algorithms.LearningWrappers import learn_parametric from spn.algorithms.Inference import log_likelihood train_data = np.random.binomial(1, [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.1], size=(100, 10)) ds_context = Context( parametric_types=[ Bernoulli, Bernoulli, Bernoulli, Bernoulli, Bernoulli, Bernoulli, Bernoulli, Bernoulli, Bernoulli, Bernoulli, ] ).add_domains(train_data) spn = learn_parametric( train_data, ds_context, min_instances_slice=20, min_features_slice=1, multivariate_leaf=True, leaves=create_cltree_leaf, ) ll = log_likelihood(spn, train_data) print(np.mean(ll)) .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 0.000 seconds) .. _sphx_glr_download_auto_examples_models_multivariate_leaf.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: multivariate_leaf.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: multivariate_leaf.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_