:orphan: .. _sphx_glr_auto_examples: .. _basic_examples: Example Gallery --------------- These are some simple examples demonstrating ``spn``. .. raw:: html
.. _sphx_glr_auto_examples_language: .. _dsl_examples: Syntax and DSL -------------- Examples that demonstrate the basic syntax for composing Sum-Product Networks. .. raw:: html
.. only:: html .. figure:: /auto_examples/language/images/thumb/sphx_glr_plot_spn_dsl_thumb.png :alt: Domain Specific Language for SPNs :ref:`sphx_glr_auto_examples_language_plot_spn_dsl.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/language/plot_spn_dsl .. raw:: html
.. only:: html .. figure:: /auto_examples/language/images/thumb/sphx_glr_plot_spn_object_hierarchy_thumb.png :alt: Composing SPNs from Sums and Products :ref:`sphx_glr_auto_examples_language_plot_spn_object_hierarchy.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/language/plot_spn_object_hierarchy .. raw:: html
.. _sphx_glr_auto_examples_models: .. _model_examples: Tractable Probabilistic Models ------------------------------ These examples demonstrate some of the tractable probabilistic models which can be represented, learned, and queried in SPFlow. .. raw:: html
.. only:: html .. figure:: /auto_examples/models/images/thumb/sphx_glr_mixed_spn_thumb.png :alt: Mixed SPN :ref:`sphx_glr_auto_examples_models_mixed_spn.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/models/mixed_spn .. raw:: html
.. only:: html .. figure:: /auto_examples/models/images/thumb/sphx_glr_parametric_spn_thumb.png :alt: Parametric SPN :ref:`sphx_glr_auto_examples_models_parametric_spn.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/models/parametric_spn .. raw:: html
.. only:: html .. figure:: /auto_examples/models/images/thumb/sphx_glr_plot_learn_spn_classifier_thumb.png :alt: Learning an SPN for Classification :ref:`sphx_glr_auto_examples_models_plot_learn_spn_classifier.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/models/plot_learn_spn_classifier .. raw:: html
.. only:: html .. figure:: /auto_examples/models/images/thumb/sphx_glr_multivariate_leaf_thumb.png :alt: Multivariate Leaf :ref:`sphx_glr_auto_examples_models_multivariate_leaf.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/models/multivariate_leaf .. raw:: html
.. only:: html .. figure:: /auto_examples/models/images/thumb/sphx_glr_cnets_thumb.png :alt: Cutset Networks (CNets) :ref:`sphx_glr_auto_examples_models_cnets.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/models/cnets .. raw:: html
.. _sphx_glr_auto_examples_queries: .. _probabilistic_queries: Querying Probabilistic Models ----------------------------- One of the most interesting aspect of SPNs is the tractable inference. These examples demonstrate some of the ways these models may be queried. .. raw:: html
.. only:: html .. figure:: /auto_examples/queries/images/thumb/sphx_glr_plot_marginalize_thumb.png :alt: Marginalizing an SPN :ref:`sphx_glr_auto_examples_queries_plot_marginalize.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/queries/plot_marginalize .. raw:: html
.. only:: html .. figure:: /auto_examples/queries/images/thumb/sphx_glr_plot_tractable_inference_thumb.png :alt: Tractable Marginal Inference :ref:`sphx_glr_auto_examples_queries_plot_tractable_inference.py` .. raw:: html
.. toctree:: :hidden: /auto_examples/queries/plot_tractable_inference .. raw:: html
.. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-gallery .. container:: sphx-glr-download sphx-glr-download-python :download:`Download all examples in Python source code: auto_examples_python.zip ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download all examples in Jupyter notebooks: auto_examples_jupyter.zip ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_