:orphan:
.. _sphx_glr_auto_examples:
.. _basic_examples:
Example Gallery
---------------
These are some simple examples demonstrating ``spn``.
.. raw:: html
.. _sphx_glr_auto_examples_language:
.. _dsl_examples:
Syntax and DSL
--------------
Examples that demonstrate the basic syntax for composing Sum-Product Networks.
.. raw:: html
.. only:: html
.. figure:: /auto_examples/language/images/thumb/sphx_glr_plot_spn_dsl_thumb.png
:alt: Domain Specific Language for SPNs
:ref:`sphx_glr_auto_examples_language_plot_spn_dsl.py`
.. raw:: html
.. toctree::
:hidden:
/auto_examples/language/plot_spn_dsl
.. raw:: html
.. only:: html
.. figure:: /auto_examples/language/images/thumb/sphx_glr_plot_spn_object_hierarchy_thumb.png
:alt: Composing SPNs from Sums and Products
:ref:`sphx_glr_auto_examples_language_plot_spn_object_hierarchy.py`
.. raw:: html
.. toctree::
:hidden:
/auto_examples/language/plot_spn_object_hierarchy
.. raw:: html
.. _sphx_glr_auto_examples_models:
.. _model_examples:
Tractable Probabilistic Models
------------------------------
These examples demonstrate some of the tractable probabilistic models which
can be represented, learned, and queried in SPFlow.
.. raw:: html
.. only:: html
.. figure:: /auto_examples/models/images/thumb/sphx_glr_mixed_spn_thumb.png
:alt: Mixed SPN
:ref:`sphx_glr_auto_examples_models_mixed_spn.py`
.. raw:: html
.. toctree::
:hidden:
/auto_examples/models/mixed_spn
.. raw:: html
.. only:: html
.. figure:: /auto_examples/models/images/thumb/sphx_glr_parametric_spn_thumb.png
:alt: Parametric SPN
:ref:`sphx_glr_auto_examples_models_parametric_spn.py`
.. raw:: html
.. toctree::
:hidden:
/auto_examples/models/parametric_spn
.. raw:: html
.. only:: html
.. figure:: /auto_examples/models/images/thumb/sphx_glr_plot_learn_spn_classifier_thumb.png
:alt: Learning an SPN for Classification
:ref:`sphx_glr_auto_examples_models_plot_learn_spn_classifier.py`
.. raw:: html
.. toctree::
:hidden:
/auto_examples/models/plot_learn_spn_classifier
.. raw:: html
.. only:: html
.. figure:: /auto_examples/models/images/thumb/sphx_glr_multivariate_leaf_thumb.png
:alt: Multivariate Leaf
:ref:`sphx_glr_auto_examples_models_multivariate_leaf.py`
.. raw:: html
.. toctree::
:hidden:
/auto_examples/models/multivariate_leaf
.. raw:: html
.. only:: html
.. figure:: /auto_examples/models/images/thumb/sphx_glr_cnets_thumb.png
:alt: Cutset Networks (CNets)
:ref:`sphx_glr_auto_examples_models_cnets.py`
.. raw:: html
.. toctree::
:hidden:
/auto_examples/models/cnets
.. raw:: html
.. _sphx_glr_auto_examples_queries:
.. _probabilistic_queries:
Querying Probabilistic Models
-----------------------------
One of the most interesting aspect of SPNs is the tractable inference.
These examples demonstrate some of the ways these models may be queried.
.. raw:: html
.. only:: html
.. figure:: /auto_examples/queries/images/thumb/sphx_glr_plot_marginalize_thumb.png
:alt: Marginalizing an SPN
:ref:`sphx_glr_auto_examples_queries_plot_marginalize.py`
.. raw:: html
.. toctree::
:hidden:
/auto_examples/queries/plot_marginalize
.. raw:: html
.. only:: html
.. figure:: /auto_examples/queries/images/thumb/sphx_glr_plot_tractable_inference_thumb.png
:alt: Tractable Marginal Inference
:ref:`sphx_glr_auto_examples_queries_plot_tractable_inference.py`
.. raw:: html
.. toctree::
:hidden:
/auto_examples/queries/plot_tractable_inference
.. raw:: html
.. only :: html
.. container:: sphx-glr-footer
:class: sphx-glr-footer-gallery
.. container:: sphx-glr-download sphx-glr-download-python
:download:`Download all examples in Python source code: auto_examples_python.zip `
.. container:: sphx-glr-download sphx-glr-download-jupyter
:download:`Download all examples in Jupyter notebooks: auto_examples_jupyter.zip `
.. only:: html
.. rst-class:: sphx-glr-signature
`Gallery generated by Sphinx-Gallery `_